This page is hosted on AFS file server space, which is being shut down on November 13, 2018. If you are seeing this message, your service provider needs to take steps now. Visit afs.unc.edu for more information.
ADVANCED COLLINEARITY DIAGNOSTICS FOR BODY FAT EXAMPLE
>USE 'C:\SYSTAT7\S209\BODYFAT.SYD'
SYSTAT Rectangular file C:\SYSTAT7\S209\BODYFAT.SYD,
created Tue Mar 09, 1999 at 13:03:38, contains variables:
 X1           X2           X3           Y

>let bodfat=y

>let triceps=x1

>let thigh=x2

>let midarm=x3
>mglh

>print=long

>FORMAT 12,6

>model bodfat = constant + triceps + thigh + midarm

>estimate


  Eigenvalues of unit scaled X'X                            1           2           3           4                       3.967957    0.020523    0.011512    0.000009   Condition indices                            1           2           3           4                       1.000000   13.904816   18.565705  677.372065
Condition indices are sqrt (largest eigenvalue/each successive eigenvalue);
EX: sqrt (3.967957/0.020523) = 13.904816; largest condition index (here 677.4) is the
"condition number" of X; a high condition number means that X is "ill-conditioned".
 
Variance proportions
 
                         1           2           3           4
   CONSTANT           0.000002    0.000372    0.000599    0.999027
   TRICEPS            0.000003    0.001319    0.000219    0.998459
   THIGH              0.000001    0.000033    0.000326    0.999641
   MIDARM             0.000010    0.001389    0.006934    0.991668
 


Dep Var: BODFAT   N: 20   Multiple R: 0.895186   Squared multiple R: 0.801359   Adjusted squared multiple R: 0.764113   Standard error of estimate: 2.479981   Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)   CONSTANT        117.084695    99.782403     0.0        .        1.17340  0.25781 TRICEPS           4.334092     3.015511     4.263705  0.001411  1.43727  0.16991 THIGH            -2.856848     2.582015    -2.928701  0.001772 -1.10644  0.28489 MIDARM           -2.186060     1.595499    -1.561417  0.009560 -1.37014  0.18956   Effect         Coefficient    Lower   < 95%>   Upper   CONSTANT        117.084695   -94.444551   328.613941                             TRICEPS           4.334092    -2.058507    10.726691                             THIGH            -2.856848    -8.330476     2.616780                             MIDARM           -2.186060    -5.568367     1.196247                              
  Correlation matrix of regression coefficients                         CONSTANT     TRICEPS       THIGH      MIDARM    CONSTANT           1.000000    TRICEPS            0.997684    1.000000    THIGH             -0.999001   -0.999107    1.000000    MIDARM            -0.996656   -0.995174    0.993935    1.000000  
                             Analysis of Variance   Source             Sum-of-Squares   df  Mean-Square     F-ratio       P   Regression            396.984612     3   132.328204   21.515712    0.000007 Residual               98.404888    16     6.150306 -------------------------------------------------------------------------------     Durbin-Watson D Statistic     2.243 First Order Autocorrelation  -0.168
Calculate VIF as VIF = 1/TOL
>calc 1/0.001411
      708.717222


>calc 1/0.001772
      564.334086
 

>calc 1/0.00956
      104.602510


Last modified 11 April 1999