This page is hosted on AFS file server space, which is being shut down on November 13, 2018. If you are seeing this message, your service provider needs to take steps now. Visit afs.unc.edu for more information.
ROBUST REGRESSION EXAMPLES (See next exhibit for summary results)
1.  Estimate regular regression using OLS, for comparison purposes;
first with all 51 cases and then excluding AK, DC, and NM
use 'c:\systat\grad.sys'
output robust01.prn

mglh
model grad=constant+inc+pbla+phis+edexp+urb
estimate
select state$<>"AK" AND state$<>"DC" AND state$<>"NM"
model grad = constant+inc+pbla+phis+edexp+urb
estimate

 Dep Var: GRAD   N: 51   Multiple R: 0.790   Squared multiple R: 0.624
 
 Adjusted squared multiple R: 0.582   Standard error of estimate: 5.139
 
 Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
 
 CONSTANT            69.042        5.373        0.0        .      12.851    0.000
 INC                  0.002        0.001        0.416     0.240    2.225    0.031
 PBLA                -0.414        0.063       -0.652     0.861   -6.622    0.000
 PHIS                -0.407        0.117       -0.334     0.906   -3.483    0.001
 EDEXP               -0.001        0.001       -0.147     0.342   -0.944    0.350
 URB                 -0.108        0.046       -0.307     0.491   -2.353    0.023
  
                              Analysis of Variance
  
 Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
 Regression              1973.308     5      394.662      14.941       0.000
 Residual                1188.641    45       26.414
 -------------------------------------------------------------------------------
 *** WARNING ***
 Case            2 has large leverage   (Leverage =        0.409)
 Case            9 has large leverage   (Leverage =        0.587)
 Case           32 has large leverage   (Leverage =        0.605)
  
 Durbin-Watson D Statistic     2.014
 First Order Autocorrelation  -0.020
  
 Dep Var: GRAD   N: 48   Multiple R: 0.827   Squared multiple R: 0.684
 
 Adjusted squared multiple R: 0.646   Standard error of estimate: 4.599
 
 Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
 
 CONSTANT            62.613        6.210        0.0        .      10.082    0.000
 INC                  0.002        0.001        0.487     0.275    2.944    0.005
 PBLA                -0.452        0.082       -0.544     0.768   -5.494    0.000
 PHIS                -0.759        0.161       -0.467     0.769   -4.718    0.000
 EDEXP               -0.001        0.001       -0.086     0.458   -0.674    0.504
 URB                 -0.110        0.047       -0.318     0.402   -2.324    0.025
  
                              Analysis of Variance
  
 Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
 Regression              1923.195     5      384.639      18.187       0.000
 Residual                 888.253    42       21.149
 -------------------------------------------------------------------------------
 Durbin-Watson D Statistic     2.071
 First Order Autocorrelation  -0.050

2.  Estimate same model using NONLIN (nonlinear regression); results should be the
same as regular OLS regression
nonlin
model grad = b0 + b1*inc + b2*pbla + b3*phis + b4*edexp + b5*urb
estimate

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .438131D+06 .101000D-01 .102000D-01 .103000D-01 .104000D-01 .105000D-01
                  .106000D-01
    1 .425439D+06 .102010D+01 .100769D-01 .409040D-02 .428860D-02 .103271D-01
                  .886020D-02
    2 .139249D+04 .675509D+02 .196676D-02-.404949D+00-.398282D+00-.106339D-02
                 -.105744D+00
    3 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    4 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    5 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277473.359     6    46245.560
    Residual        1188.641    45       26.414
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.624
           R(observed vs predicted) square      =        0.624
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 69.042        5.373       12.851       58.221       79.863
  B1                  0.002        0.001        2.225        0.000        0.003
  B2                 -0.414        0.063       -6.622       -0.540       -0.288
  B3                 -0.407        0.117       -3.483       -0.643       -0.172
  B4                 -0.001        0.001       -0.944       -0.004        0.001
  B5                 -0.108        0.046       -2.353       -0.201       -0.016

3.  Now estimate model with robust regression using ABOLUTE option (minimize sum of
absolute values of residuals); using estimate (rather than estimate/start) causes
NONLIN to use estimates from previous run as starting values

robust absolute
estimate


  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .118864D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    1 .208544D+03 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00

     <lines omitted to save space>
     
   21 .199849D+03 .650830D+02 .297313D-02-.373308D+00-.428259D+00-.285335D-02
                 -.189517D+00
   22 .199848D+03 .650815D+02 .297293D-02-.373197D+00-.428261D+00-.285221D-02
                 -.189531D+00
   23 .199846D+03 .650803D+02 .297279D-02-.373114D+00-.428262D+00-.285135D-02
                 -.189541D+00
   24 .199845D+03 .650794D+02 .297268D-02-.373052D+00-.428263D+00-.285071D-02
                 -.189548D+00
   25 .199844D+03 .650787D+02 .297260D-02-.373005D+00-.428264D+00-.285023D-02
                 -.189553D+00
 
 ABSOLUTE robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 100180976520.95010
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277354.834     5    55470.967
    Residual        1307.166    46       28.417
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.995
 Mean corrected R-square (1-Residual/Corrected) =        0.587
           R(observed vs predicted) square      =        0.597
  
                                                       Wald Confidence Interval

 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 65.079         .            .            .            .
  B1                  0.003         .            .            .            .
  B2                 -0.373         .            .            .            .
  B3                 -0.428         .            .            .            .
  B4                 -0.003         .            .            .            .
  B5                 -0.190         .            .            .            .

4.  Robust regression - HUBER method
robust huber=1.7
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .914998D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118864D+04 .690420D+02 .178501D-02-.414116D+00-.407304D+00-.131865D-02
                 -.108312D+00
    3 .105045D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00

     <line omitted to save space>

   19 .983334D+03 .675216D+02 .203140D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117518D+00
   20 .983335D+03 .675216D+02 .203139D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117517D+00
   21 .983336D+03 .675217D+02 .203139D-02-.416370D+00-.485885D+00-.151955D-02
                 -.117517D+00
 
 HUBER robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.94287
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277455.501     6    46242.583
    Residual        1206.499    45       26.811
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.618
           R(observed vs predicted) square      =        0.620
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 67.522        5.453       12.382       56.538       78.505
  B1                  0.002        0.001        2.519        0.000        0.004
  B2                 -0.416        0.062       -6.705       -0.541       -0.291
  B3                 -0.486        0.135       -3.604       -0.757       -0.214
  B4                 -0.002        0.001       -1.066       -0.004        0.001
  B5                 -0.118        0.047       -2.520       -0.211       -0.024

5.  Robust regression - HAMPEL method
robust hampel=1.7,3.4,8.5
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .914998D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118864D+04 .690420D+02 .178501D-02-.414116D+00-.407304D+00-.131865D-02
                 -.108312D+00
   19 .983334D+03 .675216D+02 .203140D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117518D+00

     <lines omitted to save space>

   20 .983335D+03 .675216D+02 .203139D-02-.416370D+00-.485886D+00-.151955D-02
                 -.117517D+00
   21 .983336D+03 .675217D+02 .203139D-02-.416370D+00-.485885D+00-.151955D-02
                 -.117517D+00
 
 HAMPEL robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.94287
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277455.501     6    46242.583
    Residual        1206.499    45       26.811
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.618
           R(observed vs predicted) square      =        0.620
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 67.522        5.453       12.382       56.538       78.505
  B1                  0.002        0.001        2.519        0.000        0.004
  B2                 -0.416        0.062       -6.705       -0.541       -0.291
  B3                 -0.486        0.135       -3.604       -0.757       -0.214
  B4                 -0.002        0.001       -1.066       -0.004        0.001
  B5                 -0.118        0.047       -2.520       -0.211       -0.024

6.  Robust regression - BISQUARE method
robust bisquare=7
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .883111D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118871D+04 .689837D+02 .178594D-02-.415258D+00-.405827D+00-.128777D-02
                 -.109111D+00
    3 .103273D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108313D+00
    4 .102758D+04 .685665D+02 .186363D-02-.412174D+00-.418392D+00-.137597D-02
                 -.113036D+00

     <lines omitted to save space>

   13 .101944D+04 .683667D+02 .189238D-02-.412276D+00-.426970D+00-.139400D-02
                 -.114079D+00
   14 .101943D+04 .683666D+02 .189239D-02-.412277D+00-.426974D+00-.139401D-02
                 -.114079D+00
   15 .101943D+04 .683666D+02 .189239D-02-.412277D+00-.426976D+00-.139401D-02
                 -.114079D+00
   16 .101943D+04 .683666D+02 .189239D-02-.412277D+00-.426977D+00-.139401D-02
                 -.114079D+00
 
 BISQUARE robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.93080
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277471.483     6    46245.247
    Residual        1190.517    45       26.456
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.623
           R(observed vs predicted) square      =        0.624
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 68.367        5.380       12.709       57.532       79.201
  B1                  0.002        0.001        2.353        0.000        0.004
  B2                 -0.412        0.062       -6.666       -0.537       -0.288
  B3                 -0.427        0.123       -3.462       -0.675       -0.179
  B4                 -0.001        0.001       -0.985       -0.004        0.001
  B5                 -0.114        0.046       -2.454       -0.208       -0.020

7.  Robust regression - TRIM method
robust trim=0.05
estimate/start

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .914998D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118864D+04 .690420D+02 .178501D-02-.414116D+00-.407304D+00-.131865D-02
                 -.108312D+00
    3 .102403D+04 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108312D+00
    4 .100909D+04 .705726D+02 .160999D-02-.407914D+00-.367187D+00-.115956D-02
                 -.116915D+00
    5 .100909D+04 .705726D+02 .160999D-02-.407914D+00-.367187D+00-.115956D-02
                 -.116915D+00
    6 .100909D+04 .705726D+02 .160999D-02-.407914D+00-.367187D+00-.115956D-02
                 -.116915D+00
 
 TRIM robust regression:   49 cases have positive psi-weights
                               The average psi-weight is 1.00000
  
 Dependent variable is GRAD
 
 Zero weights, missing data or estimates reduced degrees of freedom
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277457.056     6    46242.843
    Residual        1204.944    43       28.022
  
       Total      278662.000    49
 Mean corrected     3161.950    48
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.619
           R(observed vs predicted) square      =        0.621
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 70.573        5.568       12.676       59.345       81.801
  B1                  0.002        0.001        1.929       -0.000        0.003
  B2                 -0.408        0.065       -6.256       -0.539       -0.276
  B3                 -0.367        0.121       -3.022       -0.612       -0.122
  B4                 -0.001        0.001       -0.798       -0.004        0.002
  B5                 -0.117        0.048       -2.444       -0.213       -0.020

8.  Robust regression - T method (weights based on Student t distribution)
robust t=5
estimate/start
output *

  Iteration
  No.      Loss      B0          B1          B2          B3          B4
                  B5
    0 .125607D+09 .101000D+00 .102000D+00 .103000D+00 .104000D+00 .105000D+00
                  .106000D+00
    1 .782650D+08 .102010D+02 .873183D-01 .272414D-01 .290928D-01 .894241D-01
                  .746028D-01
    2 .118960D+04 .688358D+02 .178572D-02-.418723D+00-.401193D+00-.119928D-02
                 -.111142D+00
    3 .737287D+03 .690420D+02 .178500D-02-.414116D+00-.407305D+00-.131866D-02
                 -.108313D+00

     <lines omitted to save space>

   22 .705950D+03 .660164D+02 .228639D-02-.410960D+00-.514123D+00-.177926D-02
                 -.128484D+00
   23 .705960D+03 .660166D+02 .228634D-02-.410960D+00-.514115D+00-.177923D-02
                 -.128483D+00
   24 .705967D+03 .660168D+02 .228632D-02-.410960D+00-.514108D+00-.177920D-02
                 -.128481D+00
   25 .705971D+03 .660169D+02 .228630D-02-.410960D+00-.514103D+00-.177918D-02
                 -.128481D+00
 
 T robust regression:   51 cases have positive psi-weights
                               The average psi-weight is 0.79320
  
 Dependent variable is GRAD
 
     Source   Sum-of-Squares    df  Mean-Square
  Regression      277432.307     6    46238.718
    Residual        1229.693    45       27.327
  
       Total      278662.000    51
 Mean corrected     3161.950    50
  
        Raw  R-square (1-Residual/Total)        =        0.996
 Mean corrected R-square (1-Residual/Corrected) =        0.611
           R(observed vs predicted) square      =        0.615
  
                                                       Wald Confidence Interval
 Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
  B0                 66.017        5.507       11.988       54.926       77.108
  B1                  0.002        0.001        2.769        0.001        0.004
  B2                 -0.411        0.061       -6.730       -0.534       -0.288
  B3                 -0.514        0.145       -3.539       -0.807       -0.222
  B4                 -0.002        0.001       -1.198       -0.005        0.001
  B5                 -0.128        0.049       -2.634       -0.227       -0.030

Last modified 7 April 1999